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Oxidation of 1,2,4,5-Tetramethoxybenzene to a Py e ' : ' F c
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Receied March 8, 2000 Figure 1. Optical absorption spectra &f* formed during oxidation of

Cytochrome P450 (P450) enzymes are found throughout naturel by rabbit P450 1A2. The incubation containedid P450 1A2, 4uM
and are of interest because of their ability to catalyze various "2 NADPH-P450 reductase, 50M L-c-dilauroylsn-glycero-3-phos-
oxidations, including those at chemically inert sites such as Phocholine, 0.10 M potassium phosphate (pH 7.4), and an NADPH-
unactivated methyl grougsi number of mechanistic possibiliies ~ 9€n€rating system containing 0.05 mM NADP10 mM glucose
have been presented, including mobile oxygen species and severa?’phOSphate’ and 2.6 U glucose 6-phosphate dehydrogenasémihe

high-valent Fe complexes. but the most generally accented VieWpresence (A) or absence (B) of 5 mMSpectra were recorded every 40
is%hat an EY = O p%rphyr‘in radical is usgually th()a/ oxidaefi‘td’z s at room temperature. Difference spectra for the HRP (C) and P450

- . . 1A2 (D) reactions are derived from (A). The concentration was estimated
This entity is the same as that generally accepted for peroxidases; pe 3.5uM (eas0 = 9800 ML cm-Y). The inset in A (labeled “HRP")

for example, horseradish peroxidase (HReroxidases have  ghows spectra recorded with a mixture of 0.8 HRP, 0.44 mM HO,
generally been considered to be inefficient at hydrogen atom ang 0.1 mMm1 in 200 mM potassium acetate buffer (pH 4.0), with spectra

abstraction, a process ascribed to P450s, but part of the reasofecorded every 1 min at room temperature (full scale absorbance 0.8).
may be the spatial inaccessibility of substrates to the FeO entity

of peroxidases such as HRP and th.e tendency to use electrong the normal reaction cycle, supported by NADPH and NABPH
transfer via the porphyrin eddeThe view has been expressed py50 reductase. can be questioned.
that P450s are capable of hydrogen atom abstraction but not the '

le oxidation of lowEy), substrates, for example amirfes. Some polymethoxybenzenes have |&y, values and yield

X - oo stable cation radicals (at low pH) when oxidized by peroxidases
Several lines of evidence indicate that P450s can catalyze le uch as HRP and lignin peroxidadaVhen 1,2,4,5-tetramethoxy-
oxidations under some conditions. The evidence includes observec{s)enzene 1 (Scheme 1) was added tE) ’a’n aerobic system
rea_rrgangerr_\enfs,radlcals trapped from 4-alkyl-1,4-dihydro- containing rabbit P450 1A%, NADPH—-P450 reductase, and
pyrldlnes? linear free energy _rela_tlonshlﬁsse_veral similarities NADPH, the formation of a stable spectral intermediate at 450
with the elgcérochemlcal.ox.|da.t|on of amines (e.g., product . qq observed, characteristic of the cation radical and similar
distribution)®® and low intrinsic kinetic hydrogen isotope to that seen in the reaction with HRP ang(4 at pH 4 (Figure
effects?®19 However, all of this evidence is indirect. The 1)35 No band was seen when either P450, the reductasé, or

production of stable cation radicals has been observed in P450] - o o ive 6,20

reactions supported by “oxygen surrogates” such as cumene - .
. . The characteristic ESR spectrum bf was observed in the
hydroperoxidé' and iodosylbenzeni&.However, the relevance HRP reactiori?> which is much faster that that of P450 1A2
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did not produce a heme iron spin shift suggestive of binding in
the substrate site of P450 1A2 when added at a concentration of
5 mM. This concentration of DMPO inhibited the production of

1** (450 nm band) by 30%. The values of the hyperfine coupling B ' -1
constants deduced from the six-line ESR spectrum observed under W”WW

these conditions fod** are typical for trapping of a carbon-
centered radical (Figure 2) and could arise from the adduction
of 1** or a derived radical.

Some other P450s also forméd, as judged by the extent of
the change at 450 nm, but concentrationd‘dfwere less than c | -P450
with rabbit P450 1A2 (see Supporting Information). r}ﬂ, WWWM
Incubation of1 with P450 1A2 also yielded 2,5-dimethoxy- V
1,4-benzoquinone »( = 1.3 min!) and 4,5-dimethoxy-1,2- D -Reductase
benzoquinoney= 0.25 mim?) (expected for hydrolysis df* 12 WWWWMWWWWW
and identified by HPLC retention, UV spectra, and mass spec- E NADPH
trometry; see Supporting Information) and O-demethylation, as ; j ﬂ .
measured by the formation of formaldehytlé = 2.8 mirr?) b bl

(at a substrate concentration of 5 mM). Substitution daf-QO-
methy) 1 yielded a large kinetic isotope effeat & 0.1 mirr?)

3450 3475 3500 3525

for the O-demethylation reaction but only slightly decrease?-( @
fold) the magnitude of the 450 nm band ascribed*toor quinone Figure 2. ESR spectra of DMPO-radical adducts produced by the reaction
formation242% of P450 1A2 andl. A reaction (100uL) similar to that described in

We propose that the present work wittt is the first report Figure 1 was done in an ESR capillary (except that 30 mM DMPO was
of direct observation of formation of a stable radical by a P450 included). The ESR spectra shown here were all recorded 3.0 min after
in the normal catalytic system. These results have several the reaction started. ESR analyses were carried out on aliquots of the
mechanistic implications. P450s are definitely capable of 1e Mixture at room temperature and at X-band (9.81 GHz) microwave
transfer whenever the steric factors andBhe (actually a partial ~ frequency with a Bruker EMX spectrometer operating with 100 kHz
function of steric factor€}?® are appropriate. This conclusion magryenc field quulatlon. Spectrometer cqndmons were: modulation
should apply not only to aromatic systems but also anfitfégdeac e}mplltude, 1 G; microwave power, 10_mW; time constant, 0.041 s; scan
strained cycloalkané,and other lowE;, substrates, including time, 42 s; scan range, 100 G; receiver gainx S.0°. (A) Complete

several major polycyclic aromatic hydrocarbons (PAMSJhe reaction system. Control experiments did not include eith@), P450
. ) . 1A2 (C), NADPH-P450 reductase (D), or the NADPH-generating system
detection of purineN’- and C8-PAH adducts in DNA has been © () g gy

. . L (E) Lower concentrations of what appear to beOknown to be
used as ev'de_nce_ for roles of PA50s in PAH dridation because produced by the reductase under these condifibasd carbon-centered
model 1e oxidation systems generate the same adducts (other agicals were detected in the absencel 8) or P450 (C). The latter

mechanisms are also plausibté). radicals are attributed to flavin semiquinone radicals in NABF450
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